martes, 17 de noviembre de 2015

Las matemáticas en los siglos XVIII




Durante el resto del siglo XVII y buena parte del XVIII, los discípulos de Newton y Leibniz se basaron en sus trabajos para resolver diversos problemas de física, astronomía e ingeniería, lo que les permitió, al mismo tiempo, crear campos nuevos dentro de las matemáticas. Así, los hermanos Jean y Jacques Bernoulli inventaron el cálculo de variaciones y el matemático francés Gaspard Monge la geometría descriptiva.
Joseph Louis Lagrange, también francés, dio un tratamiento completamente analítico de la mecánica en su gran obra Mecánica analítica (1788), en donde se pueden encontrar las famosas ecuaciones de Lagrange para sistemas dinámicos. Además, Lagrange hizo contribuciones al estudio de las ecuaciones diferenciales y la teoría de números, y desarrolló la teoría de grupos. Su contemporáneo Laplace escribió Teoría analítica de las probabilidades (1812) y el clásico Mecánica celeste (1799-1825), que le valió el sobrenombre de ‘el Newton francés’.
El gran matemático del siglo XVIII fue el suizo Leonard Euler, quien aportó ideas fundamentales sobre el cálculo y otras ramas de las matemáticas y sus aplicaciones. Euler escribió textos sobre cálculo, mecánica y álgebra que se convirtieron en modelos a seguir para otros autores interesados en estas disciplinas. Sin embargo, el éxito de Euler y de otros matemáticos para resolver problemas tanto matemáticos como físicos utilizando el cálculo sólo sirvió para acentuar la falta de un desarrollo adecuado y justificado de las ideas básicas del cálculo.
La teoría de Newton estaba basada en la cinemática y las velocidades, la de Leibniz en los infinitésimos, y el tratamiento de Lagrange era completamente algebraico y basado en el concepto de las series infinitas. Todos estos sistemas eran inadecuados en comparación con el modelo lógico de la geometría griega, y este problema no fue resuelto hasta el siglo posterior.
Como hemos visto, el conocimiento de los números naturales, 1, 2, 3 ,..., que aparece en las estructuras monolíticas, es más antiguo que cualquier texto escrito que se conserve. Las primeras civilizaciones - en Mesopotamia, Egipto, India y China - sabían aritmética.
Una forma de ver el desarrollo de los distintos sistemas de numeración de la matemática moderna, es ver los nuevos números estudiados e investigados para responder a preguntas sobre aritmética sbre números mas antiguos. En tiempos prehistóricos, las fracciones daban respuesta a la pregunta: ¿qué número, multiplicado por 3, da 1? En la India y China, y mucho más tarde en Alemania, los números negativos se desarrollaron para responder a la pregunta: ¿qué obtienes cuando se resta un número mayor a otro menor?
 Leonhard Euler
Otra pregunta natural es: ¿qué tipo de número es la raíz cuadrada de dos? Los griegos sabían que no era una fracción, y esta cuestión puede haber desempeñado un papel en el desarrollo de la fracción continua. Sin embargo, una mejor respuesta vino con la invención de los decimales, desarrollados por John Neper (1550-1617) y perfeccionados más tarde por Simon Stevin. Usando decimales, y una idea que anticipa el concepto de límite, Neper estudió una nueva constante, queLeonard Euler (1707-1783) llamó e \;
e ^{i \pi}+1 = 0 \,
Euler fue muy influyente en la normalización de otros términos matemáticos y notaciones. El nombró a la raíz cuadrada de menos 1 con el símbolo i \; (unidad imaginaria). También popularizó el uso de la letra griega π al enunciar la razón entre la circunferencia de un círculo y su diámetro. Posteriormente, obtuvo una de las más notables identidades de las matemáticas, la identidad de Euler.
Hacia finales del siglo XVIII, Lagrange iniciaría una rigurosa teoría de funciones y de la mecánica. Ese periodo vio la gran obra de Laplace sobre mecánica celeste así como grandes progresos de Monge yCarnot en la geometría sintética.
EN EL SIGLO XVIII<br />Los matemáticos europeos de estos siglos sobrepasaron la producción matemática antigua; esto en tér...

No hay comentarios.:

Publicar un comentario